

#### Effets des acides gras sur le système immunitaire : Modulation de la signalisation cellulaire

Naim Khan UPRES EA 4183 "Lipides & Signalisation Cellulaire" Université de Bourgogne, Dijon



# n-3 PUFA : "Pharmaconutrients" → Lipid lowering effects (PPAR-α agonists) → Antihypertensive (cardioprotectors) → Anti-inflammatory actions

## **n-3 PUFA : "Immunosuppresseurs"**

Eicosapentaenoic acid (EPA) Docosahexaenoic acid (DHA)

→ Psoriasis, Dermatitis,

SLE, multiple sclerosis

Rheumatoid Arthritis



Ategbo *et al.* (2006). *J Clin. Endocrinol Metab.* 91:4137-43 Khan *et al.* (2006) *J. Autoimm.* 26:268-277

#### DHA modulates Th1/Th2 independently of PPAR- $\alpha$ activation



## Mechanisms of action of n-3 PUFA as immunomodulators

Decrease in eicosanoids of n-6 family

Increase in eicosanoids of n-3 family (and resolvins & protectins)

Decrease in activities of enzymes involved in metabolism of FA

#### Per se Actions ?

*Our hypothesis* : intervention with the second messengers



Phospholipase A<sub>2</sub>

- Secretory
- ± 14 kDa, types IB & V Ca<sup>2+</sup> dep., sPLA<sub>2</sub>



- Cytosolic

± 30-110 kDa -type - IV Ca<sup>2+</sup> dep. type - VI Ca2+ indep. IPI A



#### **T-cells express sPLA<sub>2</sub> and cPLA<sub>2</sub>**



Release of <sup>3</sup>H-[arachidonic acid / EPA / DHA]

- PLA<sub>2</sub> - type IB, V (sPLA<sub>2</sub>) and type VI (iPLA<sub>2</sub>) - release of arachidonic acid

-PLA<sub>2</sub> - type IV (cPLA<sub>2</sub>) - release of DHA

PLA<sub>2</sub> - type VI (iPLA<sub>2</sub>) - release of EPA

sPLA<sub>2</sub> are not involved in the release of DHA & EPA

#### DHA increases [Ca<sup>2+</sup>]i



#### DHA does not act on SERCA\_

1



TG (thapsigargin) : SERCA inhibitor

#### "CAPACITATIVE MODEL OF [Ca<sup>2+</sup>]i"



Khan N.A. (2010). *Prost. Leuk. Ess. Fatty Acids.* 82:179-187.

#### **DHA inhibits PKC translocation**



Novel,  $nPKC = PKC\varepsilon$ 

Atypic, aPKC = PKC $\delta$  or  $\zeta$ 



NIH / 3T3 cells

## MAP Kinase signaling



#### EPA and DHA diminish PMA-induced ERK1/ ERK2 phosphorylation



# DHA blocks cell cycle from late-G1 to S phase of cell cycle



# DHA curtails the suppressive capacity of Treg cells on Teff cell proliferation

In vitro and ex-vivo : (n-3 enriched diet containing EPAX7010 for 6 weeks)



**CFSE-labeled Teff cells** 

#### DHA modulates ERK1/ERK2, Akt and P27kip1

#### Akt phosphorylation

| p-Akt |             |             |
|-------|-------------|-------------|
| actin |             | 01 V 11 V   |
|       | U0126 DHA - | U0126 DHA - |
|       | Teff cells  | Treg cells  |

| p27kip1 |                                                                               |  |
|---------|-------------------------------------------------------------------------------|--|
| p27KIP1 |                                                                               |  |
| β−actin | Control Teff Cells<br>Control Treg cells<br>DHA+Teff Cells<br>DHA+ Treg cells |  |

#### DHA modulates HDAC7





#### Phospholipids \_\_\_\_\_



# Activation of different isoformes of PKC by n-3 PUFA/DAG



SAG = 1-stearoyl-2 AA-*sn*-glycerol SDG = 1-stearoyl-2 DHA-*sn*-glycerol SEG = 1-stearoyl-2 EPA-*sn*-glycerol

PKCα, PKCβ, PKCγPKCδ, PKCεcPKCnPKCCa<sup>+2</sup> - dependentCa<sup>+2</sup> - independent

Madani S. et al. (2001) *FASEB J.* 15:2595-2601. Madani S. et al. (2004) *J. Biol Chem.* 279: 1176-1183.









0

Unstim

PMA

Production of DAG-EPA

PMA+ PRO PMA+ U73122 +PRO

PMA+ U73122

None

☐ PMA+ U731 +PRO ] PMA+ PRO

PMA+ U73122 +PRO

PMA

PMA+ U73122

AA

Unstim

] PMA ] Unstim

PMA+ U73122

DHA

PMA+ PRO

MA+ U73122 +PRO

Unstim

PMA

PMA+ U73122 PMA+ PRO

EPA

PMA+ U73122 +PRO

С

Production of DAG-AA

Т

Production of DAG-DHA

#### n-3 PUFA/DAG modulate calcium influx via TRPC6 channels



Aires V. et al. (2007). Biochimie. 89:926-937







1-palmitoyl-2-oleyl-*sn*-glycerol (POG) 1-stearoly-2-oleyl-*sn*-glycerol (SOG)

DAG-Oleic acid



#### silencing of TRPC3 & TRPC6 by shRNA





**DAG-Oleic acid : single cell experiments** 



Kim et al. (2010). Prog Lipid Res. 49:250-61.



Kim et al. (2010). Prog Lipid Res. 49:250-61.



Kim et al. (2010). Prog Lipid Res. 49:250-61.

### **COLLABORATIONS**

- K. Moutairou (Cotonou)
- H. Merzouk (Tlemsen)
- E. Elboustani (Marrakech)
- G. Bouley (Sherbrooke)
- J. Stone (Montreal)

N.A. KHAN

A. HICHAMI

**J. PROST** 

- A. M. SIMONIN
- **C. TESSIER**
- S. MADANI
- **C. TRIBOULOT**
- A. DENYS
- **V. AIRES**

